SupplyChain / Client / list_data_lake_datasets

list_data_lake_datasets

SupplyChain.Client.list_data_lake_datasets(**kwargs)

Enables you to programmatically view the list of Amazon Web Services Supply Chain data lake datasets. Developers can view the datasets and the corresponding information such as namespace, schema, and so on for a given instance ID and namespace.

See also: AWS API Documentation

Request Syntax

response = client.list_data_lake_datasets(
    instanceId='string',
    namespace='string',
    nextToken='string',
    maxResults=123
)
Parameters:
  • instanceId (string) –

    [REQUIRED]

    The Amazon Web Services Supply Chain instance identifier.

  • namespace (string) –

    [REQUIRED]

    The namespace of the dataset, besides the custom defined namespace, every instance comes with below pre-defined namespaces:

  • nextToken (string) – The pagination token to fetch next page of datasets.

  • maxResults (integer) – The max number of datasets to fetch in this paginated request.

Return type:

dict

Returns:

Response Syntax

{
    'datasets': [
        {
            'instanceId': 'string',
            'namespace': 'string',
            'name': 'string',
            'arn': 'string',
            'schema': {
                'name': 'string',
                'fields': [
                    {
                        'name': 'string',
                        'type': 'INT'|'DOUBLE'|'STRING'|'TIMESTAMP'|'LONG',
                        'isRequired': True|False
                    },
                ],
                'primaryKeys': [
                    {
                        'name': 'string'
                    },
                ]
            },
            'description': 'string',
            'partitionSpec': {
                'fields': [
                    {
                        'name': 'string',
                        'transform': {
                            'type': 'YEAR'|'MONTH'|'DAY'|'HOUR'|'IDENTITY'
                        }
                    },
                ]
            },
            'createdTime': datetime(2015, 1, 1),
            'lastModifiedTime': datetime(2015, 1, 1)
        },
    ],
    'nextToken': 'string'
}

Response Structure

  • (dict) –

    The response parameters of ListDataLakeDatasets.

    • datasets (list) –

      The list of fetched dataset details.

      • (dict) –

        The data lake dataset details.

        • instanceId (string) –

          The Amazon Web Services Supply Chain instance identifier.

        • namespace (string) –

          The namespace of the dataset, besides the custom defined namespace, every instance comes with below pre-defined namespaces:

        • name (string) –

          The name of the dataset. For asc namespace, the name must be one of the supported data entities under https://docs.aws.amazon.com/aws-supply-chain/latest/userguide/data-model-asc.html.

        • arn (string) –

          The arn of the dataset.

        • schema (dict) –

          The schema of the dataset.

          • name (string) –

            The name of the dataset schema.

          • fields (list) –

            The list of field details of the dataset schema.

            • (dict) –

              The dataset field details.

              • name (string) –

                The dataset field name.

              • type (string) –

                The dataset field type.

              • isRequired (boolean) –

                Indicate if the field is required or not.

          • primaryKeys (list) –

            The list of primary key fields for the dataset. Primary keys defined can help data ingestion methods to ensure data uniqueness: CreateDataIntegrationFlow’s dedupe strategy will leverage primary keys to perform records deduplication before write to dataset; SendDataIntegrationEvent’s UPSERT and DELETE can only work with dataset with primary keys. For more details, refer to those data ingestion documentations.

            Note that defining primary keys does not necessarily mean the dataset cannot have duplicate records, duplicate records can still be ingested if CreateDataIntegrationFlow’s dedupe disabled or through SendDataIntegrationEvent’s APPEND operation.

            • (dict) –

              The detail of the primary key field.

              • name (string) –

                The name of the primary key field.

        • description (string) –

          The description of the dataset.

        • partitionSpec (dict) –

          The partition specification for a dataset.

          • fields (list) –

            The fields on which to partition a dataset. The partitions will be applied hierarchically based on the order of this list.

            • (dict) –

              The detail of the partition field.

              • name (string) –

                The name of the partition field.

              • transform (dict) –

                The transformation of the partition field. A transformation specifies how to partition on a given field. For example, with timestamp you can specify that you’d like to partition fields by day, e.g. data record with value 2025-01-03T00:00:00Z in partition field is in 2025-01-03 partition. Also noted that data record without any value in optional partition field is in NULL partition.

                • type (string) –

                  The type of partitioning transformation for this field. The available options are:

                  • IDENTITY - Partitions data on a given field by its exact values.

                  • YEAR - Partitions data on a timestamp field using year granularity.

                  • MONTH - Partitions data on a timestamp field using month granularity.

                  • DAY - Partitions data on a timestamp field using day granularity.

                  • HOUR - Partitions data on a timestamp field using hour granularity.

        • createdTime (datetime) –

          The creation time of the dataset.

        • lastModifiedTime (datetime) –

          The last modified time of the dataset.

    • nextToken (string) –

      The pagination token to fetch next page of datasets.

Exceptions